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Abstract

This paper proposes two algorithms for solving a
stochastic discrete algebraic Riccati equation which
arises in a stochastic optimal control problem for the
discrete-time system. Our algorithms are generalized
version of Hower’s algorithm. Algorithm I has the
quadratic convergence but requires to solve a sequence
of extended Lyapunov equation. On the other hand,
Algorithm II only needs solutions of standard Lya-
punov equations which can be solved easily but it has a
linear convergence. By a numerical example, we shall
show that Algorithm I is superior to Algorithm II in
the case of large dimension.

1 Introduction

The SDARE (Stochastic Discrete Algebraic Riccati
Equation) arises in many problems, e.g. stochastic op-
timal control, guaranteed cost control[1]

P = Ω̄T(P )P Ω̄(P ) + AT
0 ΩT(P )RΩ(P )A0

+ CTC + Υ(P ) (1)

where P is desired symmetric positive semi-definite
matrix and Ai(i = 0, 1, . . . , p), B, C, R are given ma-
trices with appropriate size. Matrix functions Υ(P ),
Ω(P ), Ω̄(P ) are defined as

Υ(P ) =
p∑

i=1

AT
i PAi (2)

Ω(P ) = (BTPB + R)−1BTP (3)
Ω̄(P ) = (I − BΩ(P ))A0 (4)

where R is assumed to be positive definite. In the
following text, we will give shorthand SDARE for (1).

It is well known for the standard continuous al-
gebraic Riccati equation, Kleinman’s algorithm[2] is
effective which iteratively solves standard Lyapunov
equation. This method has quadratic convergence un-
der the assumptions that the system is controllable
and stabilizable. Kono et al.[3] proposed an extended
Kleinman’s algorithm for the stochastic continuous al-
gebraic Riccati equation, and considered the computa-
tional effort. The numerical example showed that the

solution which iteratively solves the generalized Lya-
punov equations is superior to the solution which iter-
atively solves the standard continuous algebraic Lya-
punov equations. But, in this result, quadratic con-
vergence of the algorithm has not been proven. On
the other hand, for the standard discrete algebraic
Riccati equation, Hewer[4] proposed a solution simi-
lar to Kleinman’s method. He had shown that if the
closed-loop system is asymptotically stable then the al-
gorithm has quadratic convergence. After that, Guo[5]
had showed if the eigenvalues of the closed-loop system
is on the unit circle, then first term becomes superior.

2 Preliminary

For the existence of solution for SDARE, Tang et al.[1]
had shown following theorem.

Theorem 1 If (A0, B) is controllable, (C, A0) is de-
tectable and

inf
F

‖
∞∑

j=0

((A0 − BF )T)jΥ(I)(A0 − BF )j‖ < 1 (5)

is satisfied, then there exists positive semi-definite so-
lution P of (1). Where ‖A‖ = max{√λ : λ is a eigen-
value of ATA}.

Next, under the same assumption in theorem 1, we
consider extended DALE(Discrete Algebraic Lyapunov
Equation)

V0 = Ω̄T
0 V0Ω̄0 + AT

0 ΩT
0 RΩ0A0 + CTC + Υ(V0) (6)

where
Ω̄0 = (I − BΩ0)A0 (7)

From lemma 2 in [1], we have following proposition.

Proposition 1 There exists positive semi-definite so-
lution V0 of (6) if Ω̄0 is asymptotically stable and

||
∞∑

j=0

((A0−BΩ0A0)T)jΥ(I)(A0−BΩ0A0)j || < 1 (8)

is satisfied.

When A0 is n × n matrix, by using solution in [6]
it needs n6 ordered flops to solve equation (8). Thus,
the computational effort becomes very large.
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3 Algorithm I

From the proof of theorem 1 in [1], we have following
theorem.

Theorem 2 Under the same assumption of theorem
1, let us consider the sequence of the extended DALE
as

Vk = Ω̄T
k VkΩ̄k + AT

0 ΩT
k RΩkA0 + CTC + Υ(Vk) (9)

Ωk = (BTVk−1B + R)−1BTVk−1 (10)
Ω̄k = (I − BΩk)A0 (11)

Then, we have the solution P of (1)

P = lim
k→∞

Vk (12)

In this paper, we call the procedure in theorem 1
Algorithm I. Following lemma which concerns to the
existence of the solution of (1) is established.

Lemma 1 Let σ̄k = ‖Ω̄k‖. If for the closed loop sys-
tem which is constructed by using solution of (1),

σ̄ = ‖Ω̄‖ < 1 (13)

is satisfied, then there exists positive real number α1 <
1 which is independent of k and

σ̄k < α1 (14)

Lemma 2 There exists α2 which is independent of k
and following inequality is satisfied.

‖AT
0 (Ω − Ωk+1)T(BTPB + R)(Ω − Ωk+1)A0‖

≤ α2‖P − Vk‖2 (15)

Lemma 3 For the solution of (1), following equality
is satisfied.

Vk+1 − P

=
∞∑

j=0

(Ω̄T
k+1)

j{Υ(Vk+1) − Υ(P ) + AT
0 (Ω − Ωk+1)T

· (BTPB + R)(Ω − Ωk+1)A0}Ω̄j
k+1 (16)

The next theorem is the main result of this paper
which guarantees quadratic convergence of the Algo-
rithm I under additional assumptions.

Theorem 3 Let us assume (13) is satisfied for the
closed-loop system which is obtained by using posi-
tive definite solution P of (1) and ‖Υ(I)‖ + α2

1 < 1.
Then the convergence of Algorithm I is

‖P − Vk+1‖ ≤ c‖P − Vk‖2 (17)

where
c = α2(1 − α2

1 − ‖Υ(I)‖) (18)

(Proof) From lemma 3,

‖Vk+1 − P‖

≤ ‖
∞∑

j=0

(Ω̄T
k+1)

j{Υ(Vk+1) − Υ(P )}Ω̄j
k+1‖

+ ‖
∞∑

j=0

(Ω̄T
k+1)

jAT
0 (Ω − Ωk+1)T(BT PB + R)

· (Ω − Ωk+1)A0Ω̄
j
k+1‖ (19)

Since σ̄ < 1, from lemma 1 the first term becomes

‖
∞∑

j=0

(Ω̄T
k+1){Υ(Vk+1) − Υ(P )}Ω̄j

k+1‖

≤
∞∑

j=0

‖(Ω̄T
k+1)

j‖ · ‖Υ(Vk+1 − P )‖ · ‖Ω̄j
k+1‖

=
∞∑

j=0

σ̄2j
k+1‖Υ(Vk+1 − P )‖

=
‖Υ(Vk+1 − P )‖

1 − σ̄2
k+1

≤ ‖Υ(Vk+1 − P )‖
1 − α2

1

≤ ‖Vk+1 − P‖ · ‖Υ(I)‖
1 − α2

1

(20)

Let

α3 =
‖Υ(I)‖
1 − α2

1

then from the assumption of theorem, α3 < 1 and

‖
∞∑

j=0

(Ω̄T
k+1)

j{Υ(Vk+1) − Υ(P )}Ω̄j
k+1‖

≤ α3‖Vk+1 − P‖ (21)

is satisfied. Next, note that the second term in (19)
and from lemma 1

‖
∞∑

j=0

(Ω̄T
k+1)

jAT
0 (Ω − Ωk+1)T

· (BTPB + R)(Ω − Ωk+1)A0Ω̄
j
k+1‖

≤ ‖AT
0 (Ω − Ωk+1)T(BTPB + R)(Ω − Ωk+1)A0‖

/(1 − α2
1) (22)

Thus

‖Vk+1 − P‖
≤ α3‖Vk+1 − P‖

+ ‖AT
0 (Ω − Ωk+1)T(BTPB + R)(Ω − Ωk+1)A0‖

/(1 − α2
1) (23)

and we obtain

‖Vk+1 − P‖
≤ ‖AT

0 (Ω − Ωk+1)T(BTPB + R)(Ω − Ωk+1)A0‖
/(1 − α2

1)(1 − α3) (24)

Consequently, we obtain (17) from lemma 2.

�
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4 Algorithm II

In this section, we shall show the Algorithm II which
is extended solution for the stochastic continuous al-
gebraic Riccati equation [3] to the discrete case.

Theorem 4 Under the same assumption of theorem
1, let us consider the following DALE sequence

Vk = Ω̄T
k VkΩ̄k + AT

0 ΩT
k RΩkA0 + CTC + Υk,

k = 1, 2, 3, . . . (25)

where

Υk = Υ(Vk−1) =
p∑

i=1

AT
i Vk−1Ai (26)

Ωk = (BTVk−1B + R)−1BTVk−1 (27)
Ω̄k = (I − BΩk)A0 (28)

Then we obtain the solution P of (1) as

P = lim
k→∞

Vk (29)

When the system size is n × n, it needs n4 or-
dered flops to solve (25) by Bartels-Stewart method.
Then, the computational effort is less than the ex-
tended DALE.

Before the proof of theorem 4, we shall show the
following lemma.

Lemma 4 Let us assume there exist appropriate size
matrices A0, B, C and positive definite symmetric ma-
trices R, V . For arbitrary Ω0 and Ω1 where

Ω1 = (BTV B + R)−1BTV (30)

Then, following identical equation is satisfied

AT
0 (Ω1 − Ω0)T(BTV B + R)(Ω1 − Ω0)A0

+ Ω̄T
1 V Ω̄1 + AT

0 ΩT
1 RΩ1A0

= Ω̄T
0 V Ω̄0 + AT

0 ΩT
0 RΩ0A0 (31)

where Ω̄0 is defined by (7) and Ω̄1 = (I − BΩ1)A0.

(Proof) From (6) and lemma 4,

V0 = Ω̄TV0Ω̄0 + AT
0 ΩT

0 RΩ0A0 + CTC + Υ(V0)

= Ω̄T
1 V0Ω̄1 + AT

0 ΩT
1 RΩ1A0 + CTC + Υ(V0)

+ AT
0 (Ω1 − Ω0)T(BTV0B + R)(Ω1 − Ω0)A0

= Ω̄T
1 V0Ω̄1 + M1 (32)

where

M1 = AT
0 ΩT

1 RΩ1A0 + CTC + Υ(V0)

+ AT
0 (Ω1 − Ω0)T(BTV0B + R)(Ω1 − Ω0)A0 (33)

From lemma 2 ii) of [1], Ω̄1 is asymptotically stable,
(32) is equivalent to

V0 =
∞∑

j=0

(Ω̄T
1 )jM1Ω̄

j
1 (34)

On the other hand, the solution V1 where k = 1 in (25)
is

V1 =
∞∑

j=0

(Ω̄T
1 )j(AT

0 ΩT
1 RΩ1A0 + CTC + Υ1)Ω̄

j
1 (35)

Note that Υ1 = Υ(V0), then

V1 − V0 = −
∞∑

j=0

(Ω̄T
1 )jAT

0 (Ω1 − Ω0)T

· (BTV0B + R)(Ω1 − Ω0)A0Ω̄
j
1

≤ 0 (36)

In general, let us assume Vk−1 is positive definite and

Vk − Vk−1 ≤ 0 (37)

Then, from (25) and lemma 4,

Vk = Ω̄T
k VkΩ̄k + AT

0 ΩT
k RΩkA0 + CTC + Υk

= Ω̄T
k+1VkΩ̄k+1 + AT

0 ΩT
k+1RΩk+1A0 + CTC + Υk

+ AT
0 (Ωk+1 − ΩT

k )(BTVkB + R)(Ωk+1 − Ωk)A0

= Ω̄T
k+1VkΩ̄k+1 + Mk+1 (38)

where

Mk+1 = AT
0 ΩT

k+1RΩk+1A0 + CTC + Υk

+ AT
0 (Ωk+1 − Ωk)T(BTVkB + R)

· (Ωk+1 − Ωk)A0 (39)

As shown in above, Ω̄k+1 is asymptotically stable, then
positive semi-definite solution Vk of (25) is expressed
as

Vk =
∞∑

j=0

(Ω̄T
k+1)

jMk+1Ω̄
j
k+1 (40)

Since Vk+1 is expressed as

Vk+1 =
∞∑

j=0

(Ω̄T
k+1)

j(AT
0 ΩT

k+1RΩk+1A0

+ CTC + Υk+1)Ω̄
j
k+1 (41)

Then we obtain

Vk+1 − Vk

=
∞∑

j=0

(Ω̄T
k+1)

j{Υk+1 − Υk − AT
0 (Ωk+1 − Ωk)T

· (BTVkB + R)(Ωk+1 − Ωk)A0}Ω̄j
k+1 (42)
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From the assumption (37) and linearity of Υ(P ),

Υk+1 − Υk = Υ(Vk) − Υ(Vk−1)
≤ 0

then by using (42), following inequality is satisfied.

Vk+1 − Vk ≤ 0

Since Vk is monotonically non-increase and bounded
below

V∞ = lim
k→∞

Vk

Cleary, V∞ is solution of (1)

�

Theorem 5 Convergence of Algorithm II is repre-
sented as

‖P − Vk+1‖ ≤ c1‖P − Vk‖ + c2‖P − Vk‖2 (43)

where c1 and c2 are positive constant scalar which are
independent of k.

(Proof) In the same way as proof of lemma 3,

Vk+1 − P

=
∞∑

j=0

(Ω̄T
k+1)

j{Υk+1 − Υ(P ) + AT
0 (Ω − Ωk+1)T

· (BTPB + R)(Ω − Ωk+1)A0}Ω̄j
k+1 (44)

From lemma 1, there exists α1 which is independent
of k and the norm of both side of (44) is

‖P − Vk+1‖

≤
∞∑

j=0

‖Ω̄j
k+1‖2 · ‖Υk+1 − Υ(P )

+ AT
0 (Ω − Ωk+1)T(BTPB + R)(Ω − Ωk+1)A0‖

≤ {‖Υk+1 − Υ(P )‖ + ‖AT
0 (Ω − Ωk+1)T

· (BTPB + R)(Ω − Ωk+1)A0‖}/(1 − α2
1) (45)

From (45) and lemma 2, theorem 5 has benn proven.

�

5 Numerical Example

In this section, we show the numerical example of
A0, A1 ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n are ran-
dom matrices and p = 1. Following table illustrates
the results of n = 5, 7, 9, 11, 13. F1 and I1 are flops
and iteration number for convergence of Algorithm
I. F2 and I2 are result of Algorithm II.

Table 1 : Comparison of two methods
n F1/F2 I1/I2

5 2.3222 0.6667
7 2.6266 0.4444
9 0.8723 0.0714
11 0.1648 0.0073
13 7.4298× 10−5 1.8716× 10−8

For n = 1 ∼ 7, Algorithm II is more superior to
Algorithm I, same as continuous time case. But, for
n = 7, Algorithm I is more advantageous, and for
more large number, this tendency becomes more re-
markable. This result shows the quadratic convergence
of Algorithm I for the higher order problem.

6 Conclusion

We proposed two algorithms for solution of SDARE
and compare these computaional effort. Future study
is consideration of convergence when the closed loop
system has eigenvalues on the unit circle.
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